A Variable Step-Size Exponentially Fitted Explicit Hybrid Method for Solving Oscillatory Problems
نویسندگان
چکیده
An exponentially fitted explicit hybrid method for solving oscillatory problems is obtained. This method has four stages. The first three stages of the method integrate exactly differential systems whose solutions can be expressed as linear combinations of {1, x, exp μx , exp −μx }, μ ∈ C, while the last stage of this method integrates exactly systems whose solutions are linear combinations of {1, x, x2, x3, x4, exp μx , exp −μx }. This method is implemented in variable step-size code basing on an embedding approach. The stability analysis is given. Numerical experiments that have been carried out show the efficiency of our method.
منابع مشابه
Zero-dissipative trigonometrically fitted hybrid method for numerical solution of oscillatory problems
In this paper, an improved trigonometrically fitted zero-dissipative explicit two-step hybrid method with fifth algebraic order is derived. The method is applied to several problems which solutions are oscillatory in nature. Numerical results obtained are compared with existing methods in the scientific literature. The comparison shows that the new method is more effective and efficient than th...
متن کاملP-Stable Higher Derivative Methods with Minimal Phase-Lag for Solving Second Order Differential Equations
Some new higher algebraic order symmetric various-step methods are introduced. For these methods a direct formula for the computation of the phase-lag is given. Basing on this formula, calculation of free parameters is performed to minimize the phase-lag. An explicit symmetric multistep method is presented. This method is of higher algebraic order and is fitted both exponentially and trigonomet...
متن کاملAn Explicit Single-step Method for Numerical Solution of Optimal Control Problems
In this research we used forward-backward sweep method(FBSM) in order to solve optimal control problems. In this paper, one hybrid method based on ERK method of order 4 and 5 are proposed for the numerical approximation of the OCP. The convergence of the new method has been proved .This method indicate more accurate numerical results compared with those of ERK method of order 4 and 5 for solvin...
متن کاملUniformly Convergent 3-tgfem Vs Lsfem for Singularly Perturbed Convection-diffusion Problems on a Shishkin Based Logarithmic Mesh
In the present work, three-step Taylor Galerkin finite element method(3TGFEM) and least-squares finite element method(LSFEM) have been discussed for solving parabolic singularly perturbed problems. For singularly perturbed problems, a small parameter called singular perturbation parameter is multiplied with the highest order derivative term. As this singular perturbation parameter approaches to...
متن کاملEmbedded 5(4) Pair Trigonometrically-Fitted Two Derivative Runge- Kutta Method with FSAL Property for Numerical Solution of Oscillatory Problems
Based on First Same As Last (FSAL) technique, an embedded trigonometrically-fitted Two Derivative Runge-Kutta method (TDRK) for the numerical solution of first order Initial Value Problems (IVPs) is developed. Using the trigonometrically-fitting technique, an embedded 5(4) pair explicit fifth-order TDRK method with a “small” principal local truncation error coefficient is derived. The numerical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2011 شماره
صفحات -
تاریخ انتشار 2011